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ABSTRACT

In this report we consider the problem of detection using geographically

distributed sensors and limited communications. It is assumed that the

sensor observations consist of Gaussian processes, the statistics of which

depend upon the hypothesis. The cases considered include known and unknown

signal corrupted by noise which may be correlated between sensors. A

variety of numerical examples are given to illustrate the features of

different detection algorithms.
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Section SI4R

INT[RODUCTION ANDSUMR

11 IT s ocmn dKscie research carried out by ALPfIATECII, Inc.

for the Air Force Office of Scientific Research under contract

F49620-81-C-00l5. We describe a study into the problem of detection

using geographically distributed sensors and limited commnunication.

This research lead to a deeper understanding of this problem and to the

development of good suboptimal distributed detection algorithms.

In this section we summarize the work on this project to date.

This is done by briefly outlining the contents of three interim reports

(included as appendices).

1.2 DECENTRALIZED DETECTION GIVEN WAVEFORM OBSERVATIONS

In this interim report (Appendix A) we formulated a decentralized

detection problem in which the observations at each sensor are known

waveforms corrupted by Gaussian noise processes (assumed independent

between sensors). In this problem formulation an agent associated with

each sensor must make a decision based only on the observations avail-

able from that sensor. These decisions are then either used as the

basis for some local action or are transmitted to a fusion center where

they are combined to form a global estimate. In either case a cost is

associated with each combination of true and false decisions and the

problem is then to determine the optimal decision law for each agent.

Because we assume that the signal being observed is known and that

the noise is uncorrelated between agents we can determine the optimal



decision laws. By using a Karhunen-Loeve expansion we can reduce thi

problem to a sequence of problems involving a finite number of obser-

vations each of which can be solved using the techniques of Tenney and

Sandell [1]. The solutions of these problems form a sequence, the

limit of which is the solution to the waveform observation problem.

Two cases are considered in this interim report. The first is

that of detection when the noise is white and the second is that of

detection when the noise may be any Gaussian process with known mean

and covariance. In both cases the solution takes the following form.

Each agent forms a likelihood ratio based on his own observations.

This statistic is then compared to a threshold and a decision is made

based on whether the statistic is above or below the threshold. The

thresholds are determined so as to minimize the global cost (i.e. the

agents' separate thresholds are optimized jointly).

Examples are given illustrating both the case in which local de-

cisions are combined in a fusion center and in which they are penalized

directly by the global cost function.

1.3 DISTRIBUTED DETECTION OF KNOWN SIGNALS IN CORRELATED NOISE

In this interim report (Appendix B) we investigated the effect on

the distributed detection problem of noise which is correlated between

agents. The solution to this problem is shown to require solving

difficult coupled functional equations. Since these equations are not

analytically tractable and since they are not amenable to numerical

solution techniques, we consider a suboptimal detection policy termed

the decentralized likelihood ratio test (DLRT).

Thle DLRT is motivated by the optimal results for the uncorrelated

-2-



noise case. Each agent forms a likelihood ratio test and compares it

to a threshold to determine that agent's decision. The thresholds are

those which minimize the expected value of the global cost.

We explore the behavior of this suboptimal law by considering a

variety of numerical problems. We find that, in general, the perfor-

mance degrades as the correlation increases. This is in complete con-

tradistinction to the centralized case where performance as a function

of correlation is highly problem dependent.

This leads us to explore whether the DLRT is a poor suboptimal

estimator or whether its performance is indicative of that which could

be expected from an optimal distributed detection algorithm. For the

case in which the signals received by each sensor vary only in magni-

tude we can show that a sufficient statistic for optimal detection is

in fact the local likelihood ratio. The optimal decision law must then

be some binary function of this statistic. Binary functions can be

parameterized by the "thresholds" dividing the different regions (DLRT

corresponds to the special case of one threshold per sensor). A

variety of numerical examples were studied: in all the DLRT was

optimal. This seems to indicate that the DLRT is a good suboptimal de-

tection law and that its performance with respect to centralized laws

reflects the constraint of decentralization rather than severe sub-

opt imality.

1.4 DISTRIBUTED DETECTION OF AN UNKNOWN SIGNAL IN NOISE

In this interim report (Appendix C) we consider the problem of

distributed detection when the noise between agents is uncorrelated

but in which the signal is assumed to be a Gaussian random process of

-3-
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known mean and covariance. As in the problem considered in Section

1.3, the optimal detection laws must be found by solving coupled

functional equations. As we cannot solve these equations we again con-

sider the performance of DLRT algorithms.

This problem is more difficult than that considered earlier as the

likelihood ratio is a nonlinear function of the observations. This

means that the statistics computed are not Gaussian and thus the

optimal thresholds and the corresponding performance are very difficult

to determine exactly.

However, for the ease in which the observation time is long in

comparison to the dynamics of the signal process, the likelihood ratio

is nearly Gaussian. We therefore determine the first and second

moments of the likelihood ratio and compute the thresholds as if this

statistic were Gaussian. Several numerical examples provide insight

into the performance of the DLRT law for this problem.

Unfortunately, the Gaussian approximation used above is not valid

in the "tails" of the distribution and thus cannot be used to determine

low probability of false alarm detection laws. Approximations based on

Chernov bounds ([2] and [311) have been developed which are quite

accurate and will be reported on subsequently.

1.5 SUMMARY

in this project we have characterized the performance of distri-

buted detection algorithms based on the DLRT algorithm. While this

algorithm was selected on an ad hoc basis and is thus suboptimal a

priori, evidence indicates that it may be optimal in certain cases, and

thus we expect the insights obtained are indicative of the requirement

-4-
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IWCe haIve 4XalnIIi nod t he hehav ior oi- the DIRT on a wi de varijety of
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decent ral ized and h icrarcijica 1 decision laws, etc. In each of these

I cases we have deepened the understanding of how well distribuited de-

tection laws can perform.
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DI.CENTRALIZ ID DETECTION GIVEN WAVEFORM OBSERVATIONS

by

Dr. G.S. Lauer
Dr. N.R. Sandell, Jr.

ALI HTECH, Inc.
3 New England Executive Park

Burlington, Massachusetts 01803

(617) 273-3388

ABSTRACT

In this iatper we solve a decentralized hypothesis testing problem in which

the observations are waveforms corrupted by Gaussian noise processes. This

paper extends the results of Tenney and Sandell [1] which allowed only dis-

crete observations.

1. INTRODUCTION

In this paper we extend the distributed detection results derived by

Tenney and Sandell [1] for discrete observations to the case of continuous

waveform observations. This extension is accomplished (as in the classical

centralized case) by the use of a Karhunen-Loeve expansion [2] of the received

waveform. The cases we consider are those in w;hich a collection of distributed

agents observes known deterministic signals corrupted by Gaussian white noise

either with or without a Gaussian-colored noise component. For these cases we

1

'I 1 .



can ,.xplicitly cumpute the ;taitistics of the likelihood functions, thus

roducing the wavcform obsurvLti on ca,;e to that of a scalar observation. The

outline of this palper is the following.

In Section 2 we briefly describe the types of situations which give rise

to distributed detection problems. In Section 3 we briefly review the results

of Teiiney and Sandell [11, and in Section 4 we extend these results to the case

of waveform observations in white Gaussian noise. In Section 5 we modify this

extension to account for observations corrupted by a combination of white and

colored Gaussian noise. Finally, in Section 6 we discuss various extensions

of these results that we are currently investigating.

2. MOTIVATION

Consider a situation in which geographically distributed sensors observe

a common region for the purpose of determining the presence or absence of a

certain phenomenon.* Because of such considerations as cost, reliability,

survivability, communications bandwidth, etc., we assume that the observations

of the various sensors cannot be transmitted to a common node for centralized

processing. Rather, a local decision must be made at each sensor which can

then either be transmitted to some common node or be used as the basis for

some local action.

If the local decisions are transmitted to a central node then we assume

that they are combined to form a "global" decision by some prespecified deci-

sion function f (e.g., voting). Further, we assume that costs can be asso-

ciated with the various combinations of truth and global decision (corresponding

Think of multistatic radar for a concrete example.

. '
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to false alarms, missed detections, utc.). This leads to the situation do-

jicted in Fig. 2-1 in which two agents associated with distributed sensors make

local decisions u, and u 2 . These decisions are combined to produce a global

decision

u = f(ul,u 2) (2-1)

Note that the global cost J'(u,H) can be rewritten so as to depend only on the

local decisions by defining

J(u 1,u2,H) = J (f(u,u2),H) t'2-2)

If the local decisions are not transmitted to a central node but rather

are used as the basis of local actions then we assume that a cost can be asso-

ciated with each combination of truth and local decisions (e.g., one agent

detects a target and another does not). This situation is illustrated in

Fig. 2-2 and might arise, for example, if weapons are colocated with distributed

sensors and are to be used based on local sensor decisions. One could then

associate costs with having several agents detect and fire on a single target,

having only one agent detect and fire on a target, etc.

For our purposes the key observation is to note that in both cases

(hierarchical and distributed decisionmaking) the cost can be written as a

function of the local decisions. Thus we can consider both of these cases by

formulating a problem in which agents interact only through a common cost

function J(uIu2,H).

3



AGENT #1 AGENT #2

LOCAL LOCAL

u GLOBAL DECISION

J1I(u,H) GLOBAL DECISION COST

Figure 2-1. Hierarchical Decisioinaking.

AGENT #1AGENT #2

LOCALLOCAL

J(ulou 2,H)

Figure 2-2. Distributed Decisioninaking.
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3. REVIEW

In [1] Tenney and Sandell solved the following problem. Assume that two

hypotheses, H0 and HI , are pxssible and occur with a priori probabilities

p(110 ) = p 0  p(H1 ) p1  (3-1)

For each hypothesis the sensor observations y. (which may be random vectors)

have known probability distributions

p(yI1y 2 1Hi ) = p(y 1 IHi)p(y 2IH') , i=O,l (3-2)

Note that we assume the observations y and Y2 are statistically independent

when conditioned on the hypotheses. Only decision rules of the form

0, H0 is declared to have been detected

i 1, Hl is declared to have been detected

where uI is a function only of yi, are allowed. The decision rule can be

defined by the conditional probability distribution function

p (ui=01yi) (3-3)

which defines a randomized decision rule. The objective is to choose the

(randomized) decision rules so as to minimize the expected cost, i.e.,

min E[J(u1 ,u2 ,H)] (3-4)
J21
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For this problem formulation Tenney and Sandell proved that the optimum

decision rules are deterministic and are given by*

0
£r(y)> t (3-5)

1

0
£r(Y 2 ) >  (3-6)

where

P(yiH
0)p0

Zr (Yi= (3-7)

p(yi JH
1 )p

1

The thresholds t, and t2 satisfy the following equations.

AJi+AJo f p(y 2 IHi)dy2

{Y2 1 Zr (y2) >t 2 }

2 J f AJ 2 p(y 1IH0)dy I

{y2 £r(y)>t 2}
t2~~~~~Y I J+J{ PYI°d 39

where

AJ, = J(0,1,H1 ) - J(1,1,H ) (3-10a)

The notation f(x)j>
0y indicates choose u=O if f(x)>y, u=l if f(x)<y, and make

either choice if f(x)=y.

6
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Aj 2 = J(0,0,H1 ) + J(1,l,Hl) - J(I,0,1i) - J(0,1,H 1 ) (3-10b)

AJ 3 = J(llH 0 ) - J(0, ,H
0 )  (3-10c)

AJ4 = J(l,0,H0 ) + J(0,I,H0 ) - J(O,O,H 0 ) - J(I,,H 0 ) (3-10d)

Aj 5  J(I,0,HI ) - J(I,,H I ) (3-10)

and

AJ6 = J(1,l,H0 ) - J(1,O,H0 ) (3-10f)

Equations 3-8 and 3-9 define agent-by-aaent optimal decision strategies (i.e.,

ones which cannot be improved by the unilateral action of an agent). If more

than one solution to these equations exists then the costs corresponding to

these solutions must be compared to determine the globally optimal strategy.

4. WAVEFORM OBSERVATIONS IN WHITE NOISE

In this section we consider the problem posed in Section 3 modified so

that the observations are waveforms rather than vectors. The solution of the

previous section is not directly applicable since p(yjH i) need no longer be

well defined thus invalidating Eqs. 3-6 through 3-9. The approach we take to

extending the results of [1] to the waveform case requires that we assume the

received waveforms are Gaussian processes. In this section we assume the

received waveform is either white noise or a known deterministic signal plus

white noise; in the next section we allow the noise waveforms to be arbitrary

Gaussian processes.

7



The problem formulation is as given in Section 3 except that instead of

specifying the conditional probability distributions of Eqs. 3-2 we define the

observations under the two hypotheses by

HI: yi(t) = E i si(t) + n. (t) 0 < t < T (4-1a)

HO: yi(t) = ni(t) 0 < t < T (4-1b)

The n. (t) are zero-mean Gaussian white noise processes with spectral height

N. (t) and we assume n I (t) and n 2 (t) are statistically independent. Further-1

more, without loss of generality, we assume

T
s (t)dt = I (4-2)

0

The approach we take to solving this distributed detection pioblem is to

represent the received waveforms as a countably infinite sequence of coeffi-

cients. Any truncation of this sequence produces a problem that is readily

solved by the techniques of Section 3. We solve the waveform problem by showing

that the limiting solution obtained by considering more and more coefficients

is well defined and solves the waveform problem.

The received waveforms can be expressed as*

K kk
Yi(t) = l.i.m. E Yi i(t) ; 0 < t < T (4-3)

K- k=l

An arbitrary orthonormal set is allowed here because we have assiimed that the
observation noise is white.

8
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where l.i.m. is interpreted as limit in the mean and Eq. 4-3 is equivalent to

K k k 2(

lir E( 11 yi(t)- E Yipi(t) 0 (4-4)
K k=l

k -Q k-

The functions k(t) are assumed to be such that {k (t)}k=1 are complete ortho-
1 i k=l

normal sets for i=1,2. For convenience in what follows we require that

cl(t) = s. (t) , 0 < t < T (4-5)

The y. are defined by

k T k
Yi f Yi(t)Ok(t)dt (4-6)

0

and are clearly Gaussian random variables. Since {4k} are orthonormal sets

we have that

T

f s. (t)n (t)dt A wl: H0

0 1 1 1

1 =(4-7)
Yi T

/ s(t)[ si (t)+ni(t)]dt A VEi +w': H!

0

and for k>2

Sk(t) n. (t)dt A wk . H0

k 0 (4-8)
Yi =

f M I)E(E si(t) +ni (t)]dt L w. H1

0

Furthermore,

9



ik
E{yiYi(H -= 0 , , i=1,2 , j=l,2 (4-9)

and

k = 0 (4-10)
E{ (y -Yl) (y2-Y2) ~ } =0(-0

for all k and k. This implies that only the Yi depend upon the hypothesis and

x k
that the yI and y2 are independent.*

Let us now consider the problem in which, instead of receiving a waveform

Yi(t), the i-th agent instead receives the vector

K y,2 k]
- [Yi'4 .'..i (4-11)

k
where the yi are defined in Eqs. 4-7 and 4-8. We know from (l] that for agent

1 the optimum decision law is given by

p -1 p > t (4-12)

p(yKIH)p 1

where

AJi+tj / (yKIHI) dK
2 r(y2) >t -2 -2

t = - (4-13)
SAJ 3+AJ 4  p(yK2 IH0)dy(2

Zr (Y' >t2

* 2 k
Without the Gaussian assumption on the noise we only have that the yt and yk

are uncorrelated.

10
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Because the y k are statistically independent* and because only yi depends

ulxn the hypothesis

K

P( jHO) ppyyIH°I
YJ k=2 (4-14a)

P( K K
PK(j IH)p' p(yljH-1) II p(y )P

k=2

10

(4-14b)

p(y IH )pl
2

Similarly for agent 2 we have that

p(yl H0)p0
= 1 (4-15a)

£r(y 2 ) (4-15b)

Equation 4-13 thus can be written as

K
Aj +Aj f p(y'IH')dy' T f p(y)dyk

1 r ( ) >t 2 2 k=2 OD 2
tI 2 2  K co (4-16a)

AJ +AJ f p(y'IH0 )dyl il f k( kd3 r(yl ) >t 2  k=2 2 y2

kk
2 2

Here is where the Gaussian noise assumption is used. If the yi are only
uncorrelated we cannot expand p(ykHi).

11



AJ + AJ f pyli)y1 2 r p(y2)>t(2 d

2 2 (4-16b)
AJt+AJ f p(y'IH 0 )dyl

3 r (y2) >t2
2 2

Note that neither t nor kr(y) = kr(yl) depend on K. We can thus let K
1 -1 1

to go to infinity and the decision laws remain unchanged. The solution to the

waveform observation problem is thus given by

0
kr(yi) > t. (4-17)1 1

1

where tI is given by Eq. 4-16b and t 2 is given by

AJ +Aj2  f p(y'IH')dy'5 r (yl) >t 1

t = (4-18)2 AJ +Aj f p(y IH0 )dyl

Zr (yl)>tl

and where

T

Yi = f si(t)yi(t)dt (4-19)
0

Because we have assumed Gaussian statistics for the observation noise we

can obtain a more compact expression for Zr(y ' ) and for the equations defining
1

the thresholds. Let us compute the mean and variance of yi under the

hypotheses:

TyH }O E{f s(t)ni(t)dt} 0 (4-20)

0

12



T

"f4 1111 E({ s t[E. s. (t) +n. (t)It E (4-21)

- i T Tt

00

T T

0 0
T T

sf i(t)d(T) (t )dtd} (4-22b)

1 1

f f si i(4-22b
0 1

f S 2 (t)N i (t)dt A N. (4-22c)
0

If we rewrite Eq. 4-17 as

0
nn[Qr(yl)] <r [n(t Ti (4-2)

then the decision rules become

i E 3 L PO

4Ei + l > I - n() (4-24) "

2 p

or equivalently

T 1
s(t)Yi(t)dt > T. (- 5

0

where the thresholds T.i satisfy

T, VE _- - n (4-26)
61 ¢ J3 +AJ 4 erI T2/IN 21 P

13



-I

1 A+.%J2 ef (T I - J VI )/Ni ]T'. E n . . . . . .. . . . (4- 27 )

2 - ~/E, AJ6 +AZ erf [T /N2  (-7

Note that, as in classical detuction theory, the waveform case is attacked

by ietermining a finite set of sufficient statistics and writing the decision

law in terms of these statistics. In the case just considered y is a scalar
1

sufficient statistic for agent i and this leads to the test of yi against a

threshold. The sufficient statistic computed in Eq. 4-19 can also be found as

the output of a matched filter designed for the i-th signal. Thus the optimal

decision law can be interpreted as comparing the outputs of "local" matched

filters against thresholds which are determined "globally."

As in Section 3, the equations defining the thresholds are necessary but

not sufficient and thus if multiple solutions exist, the associated costs must

be computed and compared in order to determine a globally optimal solution.

Note too that since the waveform case reduces to a scalar problem if the

underlying system is a fusion system the ROC curves computed in (1] (or

similar ones) can be used to analyze the tradeoff between probability of

detection and false alarm.

5. GENERAL GUASSIAN WAVEFORM OBSERVATIONS

In this section we extend the results of the previous section by allowing

the observations of each agent to be a known deterministic signal corrupted

by an arbitrary zero-mean Gaussian process,* where the signal depends upon the

hypothesis. Thus we have that the observations are

,
The assumption of zero mean is not restrictive as any nonzero mean can be
incorporated into the signal. We shall require that the noise have a white
component so as to avoid the unrealistic possibility of perfect detection.

14



I1I1 : zi(t) = VET sI(t) + n. (t) , T < t < Tf (5-1a)

H0 : z (t) VE- s (t) + n. (t) , T < t < T (5-ib)
1 - - (lf

where

Ein (t)n.(T) A Kn(t,T) (5-2)

and, as usual, we assume that n (t) and n2(t) are independent.

We assume that the signals so(t) and s1 (t) are exactly zero outside the
1 I

interval O<t<T. We allow the observation period to be different from (0,T]

since with nonwhite noise an extended observation period can allow better

per formance.*

Rather than work with zi (t) as given by Eq. 5-1 we define yi (t) as a

reversible function of z. (t) and work with yi (t). We choose yi (t) to make the

derivation more straightforward. Since y (t) is obtained from zi(t) by a

reversible operation working with yi (t) yields the same detection performance

as working with z. (t) (2]. We define1

yi(t) = z. (t) - VE9 s0 (t) ' T < t < Tf (5-3)
3. 1 i 0

so that

H1 : Yi(t) = C si(t) + ni(t) T, T < t < Tf (5-4a)

Consider the case where si(t) is constant on [0,1] and zero elsewhere and
ni(t) is constant on C-1,11. Clearly perfect detection is possible if
T o0.
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110: Yi(t) = n.(t) , T < t < Tf (5-4b)

where

s. (t) = , T0 < t < Tf (5-5)

1 -1

T2

E. i= f [ sE (t) + VE-9 s 9(t)]2dt. (5-6)
f0

Clearly we have that

T
f s2(t)dt = 1 (5-7)
0

for s. (t) defined by Eq. 5-5.1

As in the last section, to solve the waveform problem we consider a

sequence of detection problems formed by truncating a Karhunen-Loeve (K-L)

expansion. To avoid the unrealistic possibility of perfect detection we assume

that the noises n. (t) have white components. Thus, formally, we can write
1

n Kc
K. (t,T) = K.(t,t) + Ni(t)6(t-t) (5-8)
1 I 1

We now expand the observation yi(t) in a K-L expansion

K
k k

y (t) = l.i.m. Z y i.i(t) , T0 < t < Tf (5-9)

K- k=l

where the k(t) satisfy the integral equation
w

16



= j KC(t,U)gi(Ud , o--0
~k k WY (tU) k (u)d u  ,T <t I Tf510

T f 1

0

If the solutions to Eq. 5-10 do not form j complete orthonormal set (i.e., if

K.(t,t) is not positive definite), we 
augment it to make it complete.

C

Under HI we have that

k k k (5-11)
y. s. + n.(

where

k TfW k td (5-12)

Tf
T
0

k f k it i t d  (5-13)

n i  n =itd

Under H
0 we have that

k k (5-14)
Yi =- n i

Furthermore

E{n k } =0 
(5-15)

k 22 k (5-17)
E{(n .) } = 0 .

E~n Zn. k 0 Zk 
(5-17)
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and

E{(y -yz (y y ) H i  = 0 (5-18)
11 2 2

Consider the problem where each agent receives the first K coefficients

in the K-L expansion of yi(t). As before we define

K [l k]
i 

(5-19)

The decision law for agent 1 is

0r(y
K ) > 

t
K

--r(y < t1 1 (5-20)

where

K k
K1 p(ykIHO)

Qr(y K) = k (5-21)
11 p(yI HI)

k=1

AJ +AJ fI (yK IH1)d K
12 -K K -2 Z2

t K X 2 p>t2 - (5-22)

1 i +AJi f~ Kp(L2 1H~dY3 4 r(y K)K>t
y2 2

Equation 5-21 can be written as

18
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iy

___I 2
k=l1 k [ 2 k

,, K 2 11 A i -
r ) - _(5-23)

1 1

YK 
K 

____ 

k__ 
_ 

____k_ 
2_

Canceling common terms and letting K-- we have

kk k 2
9.oko 0 is 1 , O( l)--4

£n[r(Yi (t))] z 11 + -2 kE 
k  (5-24)

k=1 X . k=1 x .1 2.

Using the definition of sk and yk we can rewrite Eq. 5-24 as
1 1

kn[tr(yi (t))] = T T (t) k i i s iu)du dt

T (T 'k1 A.O 1

E. f f 00 .(t) (u)

+ 21f s (t) k s u)du dt

T T 1 k=1

(5-25)

Defining

k k

Qi(tu) =Z k (5-26)
1 k=l Ai1

and

T

g. C(t) = E Tf Q(t, u) si(u)du (5-27)
0
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we can rewrite Eq. 5-25 as

Tf

Z A Zn(Zr(y i( (t)+ - CiE si(t))gi(t)dt (5-28)

T
0

The decision rule for agent 1 thus becomes

Tf 1 0
-f (y (t)-(t))gl(t)dt < n(t ) = (5-29)1Y t- IESlt))5-29)

T 1
0

where

t = lim tK  (5-30)

K-o

and t is given by Eq. 5-22. If we define

K K
Zk in[£r(yK)] (5-31)1 -

then Eq. 5-22 can be rewritten as

AJ 4+AJ 2  p(ki1jH')d Z
K t2) pl

t I = 0) p1  (5-32)
op

0

AJ34-AJ ~ . pIjH0 )d ZK
kn(t 2 )

The limit of tK can now be obtained
1
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JI +AJ2  f P(k 2
111)dk2

t 2- p (5-33)

AJ3+AJ4  f p(k2IH
0 )dk2  P

2

To determine t we need the statistics of £ 2* But k2 is a linear func-

tion of y2 (t) so it is a Gaussian random variable. We have

E{ 2Nr0 = 2 T f
E{2 2 1H0 } - f s 2 (t)g 2 (t)dt A m (5-34)

2T2 2To

1 k - -'2= - f s2 (t)g2 (t)dt =-m 2  (5-35)
T

0

and

E{= (f j g 2 (t)Kn(t,u)g2 (u)u dt (5-36)
T T
0 0

.1 Recalling the definition of g2(t) from Eq. 5-27 we have

-1 f f f g (t) Kn(,)(,) (v)dvdu d

{ 2 - 2 ) IHi 2 T f T 2 T 2 2 2
0 0 o (5-37)

It can be shown [2] that Qi(u,v), as defined by Eq. 5-26 satisfies

T f

f K (t,u)Q(u,v)du = 6(t-v) (5-38)
T n

0
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so that Eq. 5-37 becomes

2 Tf
{ (k 2- z2)1Hi} E qE2 T g 2 (t) S 2 

( t ) d t  2m2  (5-39)
T0

The threshold T. thus satisfy

AJ1 +AJ2 [l-erf((r 2+m2 )/2m2)) plT = Zn A2+ j[-rf(m-M)~ 2 - (5-40)
1 AJ3+AJ 4 [ l-erf ( ( 2 -m 2 )/V )] (540

3 422 m2)P

AJ 5+AJ 2 l - e r f ( ( I 1 ) / 2 I ) ] p'

2=  Zn 5- (5-41)

AJ 6 +6J 4 [(-erf((T1 -m 1)/2IV )] p 0

The decision rules are thus given by

T f T f

Yi(t)gi(t)dt > E i si(t)gi(t) -i (5-42)
T 0 T0 0

where gi(t) are determined from Eqs. 5-27 and 5-38, the T. solve Eqs. 5-40

and 5-41 and yi (t) is determined from Eq. 5-3.

As before the ecuations defining the T. are necessary but not sufficient.1

Thus to determine a globally optimal solution, the costs corresponding to all

solutions to Eqs. 5-40 and 5-41 must be computed and compared.

6. SUMMARY

In this paper we have extended the results of Tenney and Sandell (1] to

the case in which each agent makes waveform observations in Gaussian noise.
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In these cases the optimal decision laws are the same as in the centralized

case (i.e., we perform certain linear operations on the signal and compare the

resultant scalar to a threshold), however, as in [l] the agents thresholds

satisfy coupled nonlinear equations. We have given explicit formulae for

determining these thresholds for both the case in which the noise is purely

white and in which the noise is colored (with a white component).

In ongoing research we are considering problems in which the observations

of the different agents need not be conditionally independent. For these cases

we are able to use many of the techniques of this paper, though we find that

globally optimal results cannot usually be determined. The results of this

paper motivate a suboptimal decentralized detection scheme in which signal

processing is only locally optimal but the thresholds are determined globally.
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SECTION 1

INTRODUCTION

In this paper we extend the distributed detection results derived by

Lauer and Sandell [1] and Tenney and Sandell (2] for uncorrelated sensor

noise to the case of noise which is correlated between the distributed

sensors. Determining the optimal decentralized detection law for the

correlated noise problem requires the solution of sets of functional

equations. Since these equations are not analytically tractable and since

they are not amenable to numerical solution techniques, we consider a sub-

optimal detection policy termed the Decentralized Likelihood Rato Test

(DLRT) and motived by the uncorrelated noise results.

In section 2 we introduce the correlated noise problem and briefly

describe physical situations which give rise to it. In section 3 we show

that determining the optimal distributed detection policy requires solving

coupled sets of functional ecuations and we introduce the class of sub-

optimal detection policies with which we will be concerned for the remainder

of the paper. In section 4 we give some numerical results illustrating

the behavior and performance of the suboptimal laws. In section 5 we

briefly consider whether the loss in performance of the decentralized as

compared to the centralized detection law associated with the example of

section 4 is intrinsic in the constraint to decentralized signal processing

or is due to the fact that only a suboptimal law is being considered.

11j



Finally, in section 6 we discuss various extens;ions of the results of this

paper that are currently under investigation.
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SECTION 2

PROBLEM FORMULATION AND MOTIVATION

As in [1] we asstune that there are two distributed sensors, indexed by

i 1, 2, and two hypotheses to be tested based on the sensor observations,

indexed by j = 0, 1. The observations under the two hypotheses are assumed

to be generated by

H yi(t) Eisi(t) + ni(t) T f<t<T (2-1a)

H: Yi (t) = n. (t) T <t<T. (2-lb)

Here we assume that s. (t) is a known signal with unit energy which is zero1

outside the interval [0, T] where T <0<T<T f . The n. t) are assumed to be

zero-mean Gaussian processes where

Efni(t)nk (t = Kin (t, r) (2-2)

and we assume (to avoid the possibility of singular detection)

n Kc

K.n (t,T) K. (t, -) + N. (t-i) (2-3)
ii i 1

with N. X 0. Note that, unlike [1] we do not assume that the noise processes

*0
Recall from [] that assuming no signal is present under H° entails no

1o59 of generality.

3



n
are uncorrelated, i.e. we allow Kik(t 1 T) to be non zero for i / k.

As in [1] we issume that the objuctive is to minimize the expected

global cost, i.e.,

min E[J(u,,u 2 ,H) ] (2-4)
U1iU 2

where only decentralized decision rules of the form

0 H 0 is declared to have occured
u. =1 1 , 1 is declared to have occured

in which u. is a function of yi (t) alone are allowed. Recall from [1i that

this formulation of the cost allows us to consider both cases in which

decisions u. are made strictly by local agents and cases in which tentativeI

local decisions are made which are sent to a global decision maker for a

final decision.

The assumption that the sensor noise is correlated arises realistically

in many detection problems. For example, in passive detection (e.g.,

passive sonar or passive electromagnetic signal detection) noise is likely

to be correlated between nearby sensors (e.g. ambient sea or atmospheric

noise). Even in active detection correlated noise may be a realistic

assumption. For example, the radar returns from a fluctuating target are

likely to be correlated if the sensors are located close together.
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SECTION 3

SUBOPTIMAL DECISION POLICY

Let us attack the problem of section 2 using the technique and

notation of ([1], sections 4 and 5). This simply involves expanding the

observations in a Karhunen-Loeve (K-L) expansion [3] and considering the

problems formed by truncating the infinite series of K-L coefficients.

Recall that we expand yi (t) via

k k

yi (t) = l.i.m. E yi4i(t) , To<t<T f  (3-)
K-- k=l

k
where the .k(t) satisfy

1

X k.kCt) J ~K c(t,u) k (u)du ,T <t<T (3-2)

Under H we have

k k k (33)y- s.+4n. -3
1 1

where

k A fTf V- k
si .'T VE isi t i(t)dt (3-4)

0

k 6 f k (35)
n = *T ni(t) (t)dt, (3-5)

0

while under Ho we have that

k k
yi = n. (3-6)

5



As in [1]

E{nk  0 (3-7)
1

E }(nk) = A.+N. (3-8)1 1 1

i k

E{n n k 0 £ k (3-9)
i i

however, unlike [l], the K-L coefficients are generally correlated. That is,

E{Y'-E{Y'IHJ}) (y2-E{y2 HjI) l = fTf fTf k(t)Knitl2 k ()dtdT(3-10a)
2T T

0 0

A c (3-10b)

which is not generally zero.

From [1] the optimal decision law based on the first K coefficients

of the K-L expansion is given by the solution of the following two equations:

AJ +AJ 2  P(2 yKK H )d- KKK

r (K) -2ju2=0 (3-11)

1I

AJ+4AJ / y-2ty I H )dy2

K K
Y2l u2= 0

AJ +Aj J ( KI K, II) K

5 2 K o Y-1 )L2  ) 1

r2 Y) (3-12)

f KK
AJ+-Aj P(YI 2

H )d K
6 4 - Y2 Y

Y-"1 u I =0

6
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Note that the decision law for each sensor is required to determine

the region of intoqrtion fur the right hand side (r.h.s.) of equations

3-11 and 3-12. Unlike the uncorrelated noise case the structure of the

optimal distribution decision law is not of the form

K 0 K 3-13)~r.( > t.(-3

K K
since the r.h.s of equations 3-11 and 3-12 depend on y and Y2 . Thus we

cannot convert the functional equations 3-11 and 3-12 into equivelent

algebraic equations for tK

No analytic solution to these equations has been determined and

numerical techniques do not seem to be computationally tractable. We are

thus motivated to examine suboptimal decision laws for the problem of

distributed detection with correlated sensor noise.

The approach we take is to note that equations 3-11 and 3-12 can be

written as

Kr (y) K K
Qr. ()Li) < t i(Yi) (3-14)

K K K
11

andtha byrepacig ti 
(
Y ) with a non data dependent threshold t i, the

functional equations reduce to algebraic equations of the form considered

in (11 and [2]. This is equivalent to assuming locally optimized signal

processing (i.e., signal processing that would be optimal if only one

sensor at a time were considered) but with a globally optimized threshold.

This approach has the further advantage of being simple to implement:

the limit as K - of the likelihood ratio £ (LK) is a scalar computed by
1 -1

7



integrating yi (t) against a deterministic function gi (t). The optimal

solution need not necessarily be a finite dimensional test and thus consid-

erations of implementability might motivate examination of this decentralized

likelihood ratio test (DLRT) even if equations 3-11 and 3-12 could be

solved.

The limit of knlri yK)] as K is

Z. = £nri (yi)H - j (Yi (t)- VEsi (t)) g (t)dt (3-15)
T 2 i

0

where

g(t) ffQi(t,u)siu)du (3-16)
T

0

and Qi satisfies

f n~
K, i(t,u)Qi(u,v)du = 6(t-v). (3-17)

T i iT
0

The detection laws we shall consider thus are of the form

>0 T
i < (3-18)

i<1

To determine the optimal T. we note that the £. are Gaussian, and
i i

determine the mean, variance and correlation of the k. under each hypothesis.i

We compute

+ E f Tfsi
{1 = +M -19)

E{QjH2 J. t~g~,t f(
iT



E.HI - = f-f., (3-20)1 T

{(iE{ IJH11 )2jE- fE f (~ (t)d (t 2 m-Mi (3-20)
T

0

E(-E{£IJ}(k-Ejg)2 HJ},
j  l fTfg(t)s K(t~ug2(u,, (3-21

T
0

(to within an constant independent of T I by

AJ1 f p(I 1 IHI)dk1p(H )-AJ f p(9, H0 )dk 1p(H
0 )

One half of a necessary condition for optimality of the T.i can -be

1 3.1

obtained by differentiating 3-23 with respect to TI and setting the result

to zero. This yields

-AJlP(tl IH)+AJ 3P(TlIHO)-AJ2 f p(T 1, 2 HI)d 2+AJ 4fP(Tlk2IHO)d 2 = 0

"[2 T2

(3-24)

Using equations 3-19 through 3-22 we can rewrite 3-24 as

We assume p(H O ) = p(H ) = 1/2 for ease in notation.

9



An J +AJ2 (l-erf[(T +fm2-~v~~~ r1 m)/~n(~~l[AJ+A1 l- 2f[ -P VM 2 /Mi(T+Mi))/ 2mUp) } (3-25)

Similar computations yield the second half of the necessary condition:

nAJ 5+J(-erf( (T+mM-P 2-- /m 2 ))/ 2mm (l-p 2 )])l
2 5 2Aj6+AJ(lerf((T-mp 1 2 2m2 1 (3-26)

Equations 3-25 and 3-26 are necessary conditions for the optimality

of TI and T2* In general these equations have multiple solutions, in

which case one must evaluate the cost associated with each solution to

determine the best detection law in this class.
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SECTION 4

EXAMPLE

In this section we consider an example involving a scalar observation

with correlated noise. First we introduce the observation model and rewrite

the necessary conditions, then in subsections 4.1 and 4.2 we consider two

different global cost functions.

Assume that the observations are given by

Hy( =%6E. sin(27Tt)+n (t) O<t<l (4-1a)

H0: yi (t) = n i ( t) O<t<l (4-1b)

where n. (t) is zero-mean unit variance white Gaussian noise with1

E{n (t)n 2 (t) } = P6 (t-T) . (4-2)

0 1
We assume p = p = 1/2 and note that, from 3-15,

i= -f Yi(t) v 2 E i sin(2nt)dt+Ei/2. (4-3)
0

The detection law can thus be rewritten as

T
1 A (T A'~ 1Y, = f yi(t)sin(27rt)dt >1 T =T.. (4-4)

0 0 2 \E ,
1



Defining

a. = VE 1(4-5)

and noting that

m.• = Ei/2, (4-6)

we have from equations 3-25 and 3-26

a 1 AJ1 I +AJ 2 erf[(T 2-a 2-p(T -a ))/a 1-p
T = 2 1n - (4-7)1 2 a AJ3 +AJ erf[(T 2-pT1 )/1 _-p2]

a 2  1 AJ5 +AJ 2 erf[P( -aI-(T 2 -a 2))/ 1-2

T = -- Zn (4-8)2 a2  AJ6+AJ erf[(T I-pT2 V--l-2 ]

4.1 BAYESIAN FORMULATION

We assume that the thresholds T. are to be selected so as to minimize1

the expected Bayes cost defined by equation 2-4 where

0 ifu u = H
1 2

if u I  2
= 1 2

This type of cost criterion may arise if a decisionmaker is associated

with each sensor and must act on the basis of that sensor's data alone. For

example, if the sensors are radars and the decisions determine whether or

not missiles are fired at enemy targets, then having two missed detections

may be much more serious than having one missed detection. This situation

12
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would be modeled by choosing k > 2, so that a double error is more than

twice as costly as two single errors.

For J defined by 4-9, equations 4-7 and 4-8 become

a I 1 f+(k-2)erf T 2-a2-P(Tlal)] 
1

T - kn -- O (4-10)
2 a [T 2 -PT

i (k-l)- (k-2) erf I- (4-10)

a 2  1 l+(k-2)erf- T - aI- 
--  -2

T - in L.. . (4-11)
2 a 2  (k-l)-(k-2)erf [_ 21 ] (

and we note that the "locally optimal" decision laws (T1 = a1/2, T2 = a2/2)

satisfy equations 4-10 and 4-11. This can be seen by noting that

a -pa { ra2-Pa 1 -pa .
+Ik- 2)er f - - I+(k-2) l-erf[ 2 V;1' 1-1- 2 /1 -- 12

Z nn (4-12a)F Fa2-pall e fa -Pa i
|(k-l)- (k-2) erfll t(k-l) -(k-2)ef 2 ]

k -(k-2) erf[

:r~ 1) (k )ef a2- a1 ]/

(k-1) -(k-2) er L 2T7 11
______________ _____2 1l-pl

That is the laws which would be optimal for each sensor in isolation with

respect to a minimum probability of error criterion.
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- Rn(1) = 0 (4-12c)

Equations 4-10 and 4-11 are symmetric; if (T , T 2) is a solution,

then (a1 -T , a2-T2 ) is also a solution. This is seen by noting that if

[T2-a2-P (T1 -a

al+(k-2)erf[- 2

T e 1 - in 1- (4-13a)
2 a1  1 (k-i)- (k-2)erfI T2 PT j

then

a 1 (k-l)-(k-2)erf[T2-TI V- ]

a 1 -T1 1 - - Zn 2.. .(4-13b)2 al [l+(k-2)erf[T 2-a 2-P (Tl-al) / V-VIIp ]

((a 2-T 2)-a 2 -P ((a 1 -T1)-a

a 1 (k-l)-(k-2)F-erf 1-_- n

2 n 1+(k-2) [l-erf[(a 2 -T 2)-P(al-T 1 )/ Pi-2 -]

(4-13c)

ar[(a
2 -T 2 ) - a 2 - p (aI-T 1)-al )1i+ (k-2) erfl .. . _--2-:. .

1. . .- n P (4-13d)

2 a1  l(k-l)-(k-2)erfL (a 2 -T 2 )-P (al-T)j

The costs associated with these two symmetric solutions are identical

and thus, if a solution with T. p a./2 exists, only one of this pair need
1 i~

be evaluated.

Graphical solution of equations 4-10 and 4-11 shows that there are at

most three solutions to these equations, and for certain values of k and p

14
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there is only one solution (the "locally optimal" solution). In Figures

4-1 and 4-3 we plot the Bayes cost associated with the decentralized

likelihood ratio test (DLRT) and with the "locally optimal" (LO) solutions

for aI = 1, a2 = 2 and various p and k. In Figures 4-2 and 4-4 we plot the

associated thresholds.

Figure 4-1 is a plot of the Bayes cost as a function of k for p = 0

and p = .5 . Note that, as p increases, the optimal DLRT solution becomes

much better than the LO solution. This is because the optimal solution

skews the thresholds to avoid the double errors which are more common for

larger p and more costly for larger k (see Figure 4-2).

Note that for the LO solution the cost increases as an affine

function of k since the probability of a double error is independent of k.

The optimal DLRT solution never exceeds a Bayes cost of 1 since this cost

can be obtained by setting the thresholds so that one detector always

decides 0 while the other always decides 1.

Figure 4-3 is a plot of the Bayes cost as a function of P for k = 5.

Again we see that as p increases the optimal DLRT solution becomes much

better than the LO solution. This occurs because, as P - 1, the probability

of a double error (for fixed thresholds) increases. The optimal DLRT

solution skews the thresholds (Figure 4-4) to decrease the probability of

a double error. This yields a 27% decrease in cost over the LO solution.

These results indicate that in some cases there is a significant gain

to be had by using the optimal decentralized likelihood ratio test rather

than a naive approach which ignores the correlation between sensors. Since

we cannot determine the globally optimal decision rule, it is not possible

15
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Figure 4-1. Bayes Cost as a Function of k for DLRT and LO Laws

with El =1, E2=4 and P=0 or 0.5.
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Figure 4-2. Thresholds as a Fuct ion of k for IXIR and L0 Lajws

withE,=, E=4 nd p=O or 0.5.

17



fI

1.0

L0

JI
0.9

DL RT

0.7

0.b0 0.2 0.4 0.6 0.8 1.0

p (CORRELAT ION)

Figure 4-3. Bayes Cost as a Function of p for DLRT and LO Laws

With El =, E2<4 and k=5.

18

4f4



2.5

2.0-T1

1.5
CD

LU

1.0

0.5

p(CORRELAT ION)

Figure 4-4. Thresholds as a Function of p for DLRT and LO Laws
with El 1, E2 =4 and k=5.
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to determine how much is lost by using the decentral izo-d I iI-e hood ratio

test as a sub';titute. We discuss this issue in more d,tiil in ,;,(Ction 5.

4.2 FUSION CENTER DESIGN

In this subsection we assume that each sensor sends its local

decision u. to a fusion center where a global decision u is made. We

assume that the fusion center law is defined as u = 1 if and only if

u1 = u 2 = i. We display the performance of the fusion center via receiver

operating characteristic (ROC) curves which plot probability of detection

versus probability of false alarm. In addition to plotting the performance

of the optimal DLRT we also plot the performance of the optimal centralized

detection law. This allows us to determine how the performance of the

detection system is degraded by requiring that only local decisions rather

than sensor data be transmitted to the fusion center.

The ROC curve can be obtained by varying the ratio of the cost of a

false alarm to the cost of a missed detection. If we let the false alarm

cost be unity and the missed detection cost be a then the necessary

conditions for optimality become

T A 1 ;n -erf [(T a- p(T ))a (4-14)
T 1  - a (4-14),2 a 1  1-erfL(Tl-CT 2 )/ -~

2 a2  l-erfL(T 2- i)/ J
Figures 4-5 through 4-8 are plots of the performance of the optimal
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Figure 4-5. ROC Curves for Centralized and DLRT
Laws with E 1=1, E 2 =1 and p=0.0.
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Figure 4-6. ROC Curves for Centralized and DLRT
Laws with E, =1, E2 =1 and p=0.25.
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Figure 4-8. ROC Curves for Centralized and DLRT

Laws with E, =1, E2 =1 and p=0.7 5.
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centralized test and that of the DLRT for the case where the sensors are

identical, a a 2 I. We see that as P incruases the centralized and

DLRT results become more and more similar. Figure 4-9 shows that as P

increases the performance degrades.

This occurs for the centralized problem because as p increases the

information available for decision making effectively decreases from 2

independent observations with p =0 to 1 with p =1. As p increases in the

DLRT case, each sensor has a better and better indication of what the

other observation was, and thus the centralized solution can be more

closely approximated by the decentralized solution.

Note however that the performance of the DLRT while more closely

approaching that of the centralized test degrades as p -1. This can be

understood by noting that if p is the probability of a local decision

being wrong then the probability of a double error is approximately p2

when p = 0 but is p when p = 1. Since the fusion center always makes an

incorrect decision when both local decisions are wrong, the performance

degrades as p - 1.

The phenomenon of the DLRT and centralized results growing closer

together as p increases is not universal. Figures 4-10 through 4-14

illustrate the behavior of these two decision laws for the case of

asymmetric sensors, a 1= and a2  2. In Figure 4-10 we see that for the

DLRT as p I~ the performance degrades. The reason is exactly as in the

case of a, 2 =1. For the centralized case however the performance

* becomes perfect as p -~ 1. This occurs (Figs. 4-11 through 4-14) because

by differencing the sensor observations one has
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Figure 4-10. ROC Curves for DLRT Laws with El 1, E2 =4
and p=0.0, 0.25, 0.50 and 0.75.
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Figure 4-11. ROC Curves for Centralized and DLRT Laws with
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Figure 4-12. ROC Curves for Centralized and DLRT Laws with
El 1, E2 =4 and P=0.25.
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Figure 4-13. ROC Curves for Centralized and DLRTr Laws with,
E] =1, E2 =4 and Q=0.5.
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Figure 4-14. ROC Curves for Centralized and DLRT Laws with
=1, E =4 and P=0. 7 5 .
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H2 : Ay(t) y1 (t)-y (t) ( 2-1) sin (21t)+n (t)-n, (t) (4-16a)

H Ay(t) = y1(t)-y (t) n (t) -n (t) (4-16b)
2 1  ~2

As P 1, Ay-V2-1)sin(2st) if H1 is true and Ay= 0 if H° is true,

thus perfect detection is possible.

These graphs illustrate that the price involved in using a DLRT law

is strongly dependent on the problem being considered. Similarly, the

benefit in reduction of communications requirements is highly problem

dependent. It is thus the case that detailed analysis is required to

determine whether a DLRT or a centralized detection law should be

implemented in a given situation. An interesting questions remains however:

is the poor performance of the DLRT in this second problem due to the

decentralization constrairnt or due to the fact that the DLRT need not be the

optimal decentralized law? We briefly address this question in the next

section.
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sECTION 5

ANALYS IS

For the case considered in the previous oection, the structure of

the optimal distributed decision law is known. More generally, if

s I (t) = s 2 (t) and the noise corrupting the nbservations is white Gaussian

noise, the optimal distributed decision law structure is known. Consider,

HI: Yi(t) VE VE.s(t)+n. (t) (5-1a)
1 1

0<<

H yit) = n (t) (5-1b)

where n. (t) is zero-mean unit spectral height white Gaussian noise with

Efn 1 (t)n, (t) } =P6 (t-T) . (5-2)

As usual we expand the signal into K-L coefficients where we now

choose the orthonormal functions ki(t) so that

k k Ak
(t) = p2 (t) 4 (t) , O<t<T (5-3)

and

!(t) = s(t) , O<t<T (5-4)
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We have

Ky. (t) l.i.m. N k~kt k55Y = k ki t (5-5)

K k=l

and

T1
s(t) [ VEis(t)+n (t)]dt V. 1+w H 5-6a)

1
yi foT1

s(t)n. (t)dt w. : H,
1 1

fT k(t) ( stVE.s(t)+n t)Jdt w. H 5-7a)

k 
0

yi

(t)n (t)dt w. H , (5-7b)

Note that the yk for k > 2 have the same statistics under both
ii

hypotheses and thus any optimal decision law will use only the y. s. This

implies that for problems with observations given by 5-1 the optimal

1
decision laws are functions of a scalar "observation" y

For this problem any decision law can be specified by defining the

regions of the real line in which y must lie for a decision of HI to be

made. These regions can be specified by their endpoints, and thus the

decision law can be characterized by a set of endpoints or thresholds.

This is not the cause for arbitrary vector or waveform observations since,

for these problems, a decision law must specify regions in a higher

dimensional space.
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The DLRT for both problems in the previous section tests a scalar

1
against a threshold. If yi is greater than the threshold, then H I is

declared, otherwise H0 is declared. The DLRT is thus optimal if the

optimal decentralized test is such that there is only one region in which

H is declared. This need not, however, be the case in general.

Consider Figure 5-1 wherein the DLRT law for a Bayes problem with

p 1 and large k are illustrated. The laws are given by a tick mark on

a line where the threshold T. lies. Note that, since p = 1, there are 3i

regions of interest. In A, both local decisions are u. = 0, in B, u= 0

and u2 = 1 and in C both u. = 1.

U 0 T U 1 U,

I 1
I I Y1

AIB I
A C

I III 1

U2 =0 U2 =0 T u =1222 2

Figure 5-1. Decision Laws for Bayes Problem with p=l.

A decision law with exactly identical performance is illustrated in

Figure 5-2. Here in A both u. = 0, in C both u. = 1 and in B one u. = 03-1 1

and the other u. = 1. This shows that the optimal decentralized law may
i

have multiple thresholds.

= 0 u= 0 T u 1 U1u I I
I I Y1
I I I1

A B I B C
Y2

1 U=2 32
U 0 T2=T1  u 1 T2  U =0 T =T2  u2 = 1

Figure 5-2. An Equivalent Decision Law.
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We have derived necessary conditions for the optimality of local

decision laws using up to 3 thresholds. only for problems with 1P > .9

have we found local decision laws which satisfy the necessary conditions

and have more than one threshold. For all of these cases the performance

of the multiple threshold law was inferior to that of the optimal DLRT.

While this does not prove that the DLRT is optimal for this example

it does indicate that the poor performance of the DLRT for the case where

a, = 1 and a 2 = 2 is probably due to the requirement of a decentralized

rule rather than the restriction of our attention to the particular case

of DLRT laws.

36



SECTION 6

SUMMARY AND EXTENSIONS

In this paper we have extended the results of Lauer and Sandell [11

to the case of correlated observation noise. As in [21 this leads to a

pair of functional equations which must be solved to determine the optimal

decentralized decision rule. Since these equations are not readily solved,

we introduce a suboptimal law, the decentralized likelihood ratio test.

Several examples were considered, contrasting the DLRT to naive

decentralized laws and to optimal centralized laws. These examples indicate

the advantages of using the optimal DLRT over a naive "locally optimal" rule

and also indicated that the DLRT may perform almost as well or much worse

than a centralized law depending on the given situation. This indicates

that judgement must be exercised when deciding when a decentralized

decision rule should be used.

Finally, we presented arguments to the effect that, while the DLRT

may not be optimal even for problems which reduce to scalar tests, the

limitations indicated by the examples of section 4 are grounded in the

requirement of decentralization rather than being due t(- consideration

of suboptimal decentralized decision laws.

In ongoing research we are considering the problem of detecting

an unknown signal in noise using distributed sensors. The approach we

37
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take is similar to the one herein - we consider suboptimal ]aws based on

testing the local log likelihood ratio against globally optimized thresholds.

I
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SECTION 1

INTRODUJCT ION

In this paper, we extend the methodology developed by Lauer and Sandell

[1) for distributed detection of known signals in the presence of correlated

noise to the case of unknown signals in white noise. As in (11 the optimal

detection policy requires the solution of coupled functional equations and

thus is not practical. We therefore consider a suboptimal detection policy

based on assuming that the structure of the local detection laws is a likeli-

hood ratio test (LRT) and then jointly optirdizing the thresholds of the local

decision laws.

Because the likelihood ratio (LR) is not a linear function of the obser-

vations, it is difficult to determine the p.d.f. of the LR for the purpose of

threshold optimization. We therefore compute the first two moments of the LR

and use these to determine the local thresholds and to evaluate the perfor-

mance of the distributed detection strategy.

The structure of this paper is as follows: In Section 2, we formulate

the problem of distributed detection of an unknown signal in noise as well as

the suboptimal policy we will analyze. In Section 3, we determine the mean

and covariance of the LR under each hypothesis. In Section 4, we consider a

scalar example which illustrates some of the tradeoffs to be considered when

implementing a distributed detection policy. Finally, in Section 5, we sum-

marize the results and discuss extensions we are invesLtgating.



SECTION 2

PROBLEM FORMULATION

Let us consider the problem of detecting a sample function from a Gaussian

random process in the presence of additive white Gaussian noise based on mea-

surements by two sensors. As in [11-131 we assume that it is not desirable to

transmit the received waveforms to a central location for optimal processing.

Thus a local decision u must be made at each sensor and we assume that the
i

decisions are to be made so as to minimize the expected value of a global cost

which depends upon the u and the true hypothesis.i

For this problem we assume the ith sensor's observation under the two

hypotheses is given by:

HI: dy (t) = s (t)dt + dv (t) O~tT (2-1a)
i i i

H0 : dy i(t) - dv i(t) Ot<T (2-1b)

where dv (t) are independent zero-mean Brownian motion processes withi

E{v (t)v (s)j = min(t,s). The signals s (t) are zero-mean and have known

covariances given by

E{s (t) s (T)} A KS (t,) O't,tT . (2-2)

i J - iJ

' i [[ [ [ [ [ [ , , , ,,2



We assume that, based on y i(t), ui is chosen so that

i 0 indicates H0 selected
u= (2-3)

1 indicates H I selected

and that the u are to be chosen so as to minimize a global cost E{J(Ul,U2,H)j,
i

where a(ulu 2 ,H) is the cost associated with local decision u1 and u2 when H

is true.

From arguments similar to those in [21-[5] the optimal distributed policy

has the following structure:

, I

£(y) > f (y ) (2-4)

0

where the f (-) are the solution to two coupled functional equations and £*(yi)
i i

is the log likelihood ratio. From [5] we have that

T 1 T
9*(y ) = f s (t) dy (t) - - f s2(t)dt (2-5)

i i i i 20 1

where the first integral is an Ito integral and

s i(t) = Efsi(t)jy i(T), 0< t, HI . (2-6)

i

*The notation k > indicates that u=l if £>t, u=0 if £<t and u=0 or I if t=t.

0
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The equations for f (.) are not readily solved so we consider instead the

suboptimal policy given by

I
£i = £ (Y )  > t (2-7)

<
0

where we define

t I
Zi(Yi) A f ri(t) dyi(t) - - r2 (t)dt (2-8)

0 2 1

and r (t) is some causal linear function of yi(t):
i

t
ri(t) f hj(t,T) dyj(T) (2-9)

0

The definition of X. reduces to Eq. 2-5 when r (t)=s (t) but allows us also
I i i

to consider signal estimates which are more readily computed than s (t).
i

Equation 2-8 yields 2 as a quadratic form on the observations y i(t) and
i

thus £ is not a Gaussian random variable. For the problems considered in
i

Section 4 accurate results can be obtained by assuming £ is approximatelyI

Gausslan* and thus the k can be characterized by computing the first two
i

moments of 2 and the cross correlation between k.I and £2
I

The global cost associated with thresholds t and t2 is given by

*For the cases we consider in Section 4, the Gaussian assumption leads to

results which agree for the centralized case with those in [4].

4

A. I I



J = I x 2 p ,IHI) d XdX I J( I I HJ

ti

+ f I p(x I ok IHi)dk dY i(0, I HJ
-00 t 2 2 21

OD t 2

+- f ( p( x, JHi)dX di J( I 'oHi)
t -01

+ f tI f t2P( f ,t 2 1IHi)dY,2 d I J(0 ,0 Hj) pi
-00 -00

(2-10)

This can be rewritten as

ti ti t 2

J= AJ 0 + A 1  If p~x I H')dt I+A.J2 _Of J*0 P(Xt1 ,t2 1)dX 2 dXI

tjt 1  t 2

- Ai 3  f P(x I 1H0)dt I- AJ4 - f -00 f p(L1  2 IH
0 )dk 2 dXI

t 2  t 2

+ A3 5  f p(t 2 IH)dX2-A36  f P( 2 H0 )d 12

where

AJo J( 1,1 ,HO)p'-J(I ,l,H
1)pl (2-12a)

Al= IJ(0,I ,Hl)-J(I,I ,Hl)lp
1  (2-12b)

AJ 2 = [J(0,0,Hl)+J(1,,Hl)-J(l,0,Hl>-J(0,IHl)]l (2-12c)
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AJ 3 - IJ(IlH 0 )-J(OIH 0 )1p 0  (2-12d)

AJ 4  [J(1,O,H 0)+J(O,I,H 0 )-J(O,O,H0 )-J(I,1,H 0 )1p0  (2-12e)

AJ = IJ(I,O,H 1 )-J(I,I,H 1)1pl (2-12f)

and

AJ = [J(1,1,H0 )-J(I,O,H0 )]p0  . (2-12g)

Differentiating Eq. 2-11 with respect to t and setting it to zero yields

one half of the necessary condition for optimality of the thresholds:

ti t2

AiI P(t IHI)+AJ2  f p(ti,£2 HI)d£2=AJ3 p(tlJH 0)+AJ O f p(tlt2[ H0)dt2

(2-13)

Differentiating Eq. 2-11 with respect to t and setting it to zero yields

ti ti

AJ 5 P(t 2 1Hl)+AJ 2 J p(1't2 H
1 )di 1=AJ6 P(t 2 IH0 )+AJ4  f P( 1 ,t 2 ]H0 )dt1

(2-14)

Under the Gaussian assumption we have that*

- ( ~O 2  
- x CL O

2v 1 1 2 2

P(X1, 2 H
0) e 1 10e (2-15)

1 2

*Since the observations are independent under H0 , 1 and X2 are uncorrelated.
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and

- r

2vlv 1 (1-p2)
.. ooX l 1 * 0 1 IIIp)e 1 2 (2-16a)

1 2

where

r (Cez mlw) 2 vI-2p VI1 C -m 1 l)e -M1 )+(t i ) ~)v1 (2-16b)11 2 N 12 1 1 2-2 2-2 1

mi A Elk IHI} (2-17)

J10, i=,

ml A E{(t -ml)2IHi}1 (2-18)

p = VV (2-19)

and

cl A E{(X -ml)(I 2Th )IHI} (2-20)

Using Eq. 2-15 through 2-20 we can rewrite Eqs. 2-13 and 2-14 as

F2 (t -mi))

AJ +A erfi

1 -41i-P

2vi 2v- in M3 +AJ4 erf [ (t -MO)/Fj

(2-21)

7I



(-m) 2  t 0)2 Aj 5 +AJ2 r

21  - In0  S
2 2 2~ 6 ~+a4  1rLt~m)V~

(2-22)

These equations are necessary conditions for optimnality and thus if multiple

solutions exist the corresponding costs must be computed to determine the

optimal thresholds. To solve these equations, however, we need Ml, v0 and p.
i i

These are computed in the next section.
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SECTION 3

MOMENT COMPUTATION

Recall that

T I T
£ f f r (t)dy (t) - - f r2(t)dt (3-1)
1-0 1 i 20 1

where

HI: dy (t) s i(t)dt + dvi(t) (3-2)

H0 : dy i(t) = dv (t) , (3-3)
i i

and r (t) is a linear causal function of yi(r).
i

We denote by E (-) , j=O,1 the expectation operator assuming the model
j

of dyi(t) given by H0 and H 1 respectively.

We have

T 1 T
MOl -A E°ft {£I o f E°{r (t)dv (t)} - f E°1r (t) }d t

*0 1 00{ I 1 2 0 0{
2 t)d

1 T
- - f E 0r 2(t)}dt

00

(3-4)

9



- 1L - fE {r2(t)}dtml A EI I - f TE 1 {r (t)s (t)dt+r (t)dv it)} - jd

T I T
f El{r ()s (t)}dt - f El{r2 (t)}dt

0 i 0

(3-5)

The second moment under H0 is given by

vo A Eoli _=o)2}

E E 0  fr (t)dy (t)- f r2(t)dt +- f E.0{r2(t)ldt= iT2 0 2)2

TI T T 2 td
0 t1 y 1 2 0 i 2 0 0 i

f E {r2(t)Jdt +- f f E0 r2(t)r2(i)1 - 0 rj(t)j E0{r
2(T)ldtdT

S 040 0 E 1r1t

(3-6)

Using Gaussian moment factoring 161 we have that

Eo{r2(t)r2 ()} = Eo{r 2 (t)} E {r2 (T)} + 2Efr t)r ()} 2 (3-7)

So v 0 is given by
i

T 1 T T

v0 - f E0{r 2 (T)}dt +- f f [E {r (t)r (T)}]2dtdr (3-8)
i 0 20 0 i i

The second moment under HI is given by (again using moment factoring)

10



vI A E IfT r (t)s (t)-E1{r (09 (01 - -r
2(t) + -Ej r2Ct)dt]2

01 2 i 2

T
+ f E{1j2(~d
0

T T T
f1 E1{r

2Ct)ldt + f f El{r (tOr (ii}
00 0

[Ells Wts (-r) - Ells (O~r (T)l - El{r (t)s (T)} + -Elr (tOr (T)1

+ El{r (tWs (T)} Ells i(t)r i(T)}dtdT

(3-9)

Finally we have, using similar arguments,

cl A E 1{('1-m')(9 -m2I)}

T T
a 0J 0f E1{r,(t)r 2 (T)I[E{s1 (t)s2 (T)) - E~jr1 (t)S2 (T)l - E1{s1 (t)r 2 (T)

+ I E jr (tr (T)I] + Ejr1( s(T)} E1{51(t)r (T)IdtdT

(3-10)

These quantities can be computed once h (t,T) is specified in Eq. 2-9.

We shall do so for a simple example in the next section.



SECTION 4

EXAMPLE

In this section we consider an example in which the unknown signal is a

sample path from a stationary Gauss-Markov process and in which the filter

gains K (t) of the Kalman filter that can be used to compute s (t) are chosen
i i

as the steady state values of the optimal gains. The observations processes

of concern under the two hypotheses are

H0 : dy i (t) dv i(t) (4-1)

HI: dy (t) c x(t)dt + dv (t) (4-2)
i i i

with

dx(t) = -ax(t)dt + v/-adw(t) (4-3)

where v (t) and w(t) are independent zero-mean Brownian motion processes with
i

Eiv (t)v (s)} = min(t,s) and E{w(t)w(s)} = min(t,s).
i i

The r (t) are given by
i

r (t) - c x (t) (4-4)
i ii

where

12



dx i(t) - -ax i(t)dt + k i(dy i(t)-c x (t)dt) (4-5)

The signal is assumed to be in steady state so

K S 
(t,T) - c 2 e-alt-TI (4-6)

Ks (tT) = C c e-alt-TI (4-7)
12 1 2

The filter gains k are the steady state Kalman gains:
I

k = -a[l - 2 I/c (4-8)
Ii i

We shall also assume that the observation time T is long in comparison to the

inverse bandwidth of the signal so that the signals r (t) are in steady state
i

for most of the interval 10,T]. This implies that, to a good approximation,

we can assume that the r (t) are stationary. Thus, for t ti

E{x(t)x(T)} = e-a(t-T) (4-9)

El{x(t)x ()} = A e - a ( t - T) (4-10)

-a (t-T) -a(t-T) -a (t-T)

Elx (t)x(T)j A e + e - e (4-11)

El{x (tOx (T) - A e- a(t - T ) (4-12)

13
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E~jxLt)X2(T) (4A13)

a Aia (t-T) (-4

E~jx1(t)x2(-t)1 e 4j4

where

A -(-I1+ V1+2c2/a ) ,(-5

' 2c 2

a v1+2c 2 /a ,(4-16)

and

AI(ci2 -a)+A2 (al-a) (4-17)

Bt+L

We can thus rewrite Eqs. 3-4 through 3-10 as:

2
c 1A aT

m0  
(4-18)

2

ml.- 
(4-19)

1 2

2 4 2 2
c aA T c ia A1  1 -2aT

-o + - T--(-e 1(4-20)

Sa 2a3  L 2a £)
i i
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4 2
ci(2A-Ai) F 1

v 1 = c2 A T + T - - -e-2 a T )  (-21)
I ii 2a 2a

1 122 D 2aT +D -2a2Tl-- T (I-e 2aT) +(- [T (1-e

1 2 2 a , 2a, 2a 2  2a2

+ T-- (I-e - 2aT)]2a 2a

(4-22)

where

1 1
D 1  -BA 1 + B + - B 2 + A A - A - BA 2 + - A2  (4-23)2 2 2

1 1
D =-BA2 + B + - B2 + AA - A 1 - BA 1 +-A

2
2 12 121' (4-24)

and

E-A + A I A 2 -IA 2  (4-25)

In the figures that follow we have selected cl=C2 so that the sensors are

identical. In the cases we examine the Gaussian approximation is accurate

except for the tails of the distributions. This implies that we cannot get

accurate results for cases in which P is constrained to be small (<.01 for
F

example). An approximation which is valid in these cases has been developed

and will be reported on in [8!.
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Figure 4-1 plots the probability of miss, P , as a function of signal
M

energy, E, and time-bandwidth product, A=aT/2, when the false alarm prob-

bility, P F is fixed equal to 0.1. Three curves are given on this plot. That

labeled "two sensors (centralized)" corresponds to the case in which both

Y (t) and y2 (t) are available at the fusion center and are used in making an

optimal decision. That labeled "one sensor" corresponds to assuming only

Y1(t) is available for decisionmaking. Finally, that labeled "two sensors

(distributed)" corresponds to the performance obtained by the optimal DLRT

law. In all of these cases the same signal energy per sensor is assumed.

The curve for "two sensors (centralized)" is horizontal indicating P
M

does not vary with A. This was achieved by adjusting the energy per sensor

E as a function of A. Note that, as A increases from 10 to 105, the energy

required to maintain a constant P increases from 10 to 606.6.
M

This can be explained as follows. For a fixed observation time T,

increases in A correspond to increases in signal bandwidth a. As the signal

bandwidth increases so too does the Kalman filter bandwidths associated with

the computation of s (t). Since the noise is assumed to be white, the noise
i

energy in s (t) is proportional to the Kalman filter bandwidth and thus, as
i

A increases, the signal energy-to-noise energy in the signal bandwidth

decreases. The signal-to-noise ratio needs to be constant to obtain a con-

stant P and thus the energy required increases with A.
M

For a fixed bandwidth, increases in A correspond to increases in the

observation time T. As T increases the noise energy in the signal bandwidth

increases and thus, for fixed signal energy, the signal-to-noise ratio

decreases. Thus as A increases, the energy per sensor must be increased if

constant P is to be obtained.
H
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If A is decreased below 10 then other effects enter and eventually domi-

nate the computation of energy required to attain a given P . For fixed T
M

as a A decreases the observations y (t) becomes more strongly correlated

(i.e., y (0) and y i(T) are more strongly correlated). Thus for A small

enough, less information is available for decisionmaking and the energy

required to attain a fixed P increases. This effect occurs, however, in a
M

region of A and E in which the Gaussian assumption on £ fails and thus is
i

not illustrated in Fig. 4-I.

The curve labled "one sensor", in this scalar problem, can be generated

by the same computations as for "two sensors (centralized)" except that the

energy available for decisionmaking is reduced by half. Note that PM

increases with bandwidth, despite the increase in energy, indicating an

increased sensitivity of P with respect to energy as bandwidth increases.
M

The optimal DLRT performance, labeled "two sensors (distributed),"

degrades with increasing A. The best DLRT performance thus occurs, with

respect to the centralized two sensor case, for small A. The one sensor case

is also best for small A and thus the best DLRT performance, with respect to

the one sensor case, occurs for large A.

The requirement of using a distributed law effectively reduces the

energy available for decisionmaking. We have determined the energy required

by a single sensor to perform as well as the DLRT law and plotted the result

in Fig. 4-2. The curve labled "two sensors (distributed)" is simply a plot

of the energy per sensor versus A as given by the two horizontal axes of

Fig. 4-I. The curve labeled "one sensor" is the energy required by a single

sensor to perform as well as the optimal DLRT law. The top curve plots the

ratio of the lower two curves.
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We see that the "energy losA" cItailed by using DLRT laws is not fixed:

at A-1O two DLRT sensor are equivalent to about 1.12 centralized sensors

whereas at A=10 5 two DLRT sensors are equivalent to about 1.25 centralized

sensors. In part, the effective energy loss is not fixed since the correla-

tion p between I1 and X2 decreases with increasing A. This implies that for

smaller A less information is available to the fusion center and poorer per-

formance results.
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SECTION 5

CONCLUS IONS

We have introduced a class of suboptimal distributed decision laws for

the problem of detecting an unknown signal in noise which we denoted DLRT

laws. Using a Gaussian approximation we were able to determine the perfor-

mance of these laws for a simple scalar example. For the problem considered

an optimal DLRT law with two sensors was roughly equivalent to 1.25 central-

ized sensors, thus indicating a substantial penalty exists for using dis-

tributed detection laws and the potentially high payoff for allowing sensors

to communicate.

We are currently investigating the case in which the sensors are not the

same. For the problem considered in Section 4, the optimal DLRT thresholds

are identical to those which would be used if each likelihood ratio test were

optimized individually (a locally optimal DLRT) . This occurs because the

sensors are identical and is not the case when the sensors are different.

The optimal DLRT thus performs better than the locally optimal DLRT when the

sensors are different. It is interesting to characterize the difference in

performance between these two types of laws since the difference is effec-

tively free. That is, the improved performance of the optimal DLRT does not

require more communication or different hardware -only the thresholds are

different.
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We are also developing approximations to P and P which are better than
M F

those resulting from the Gaussian assumption of Section 2. These bounds are

based on those developed in [41 and [7]; however significant modifications are

required to handle distributed decisionmaking.
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